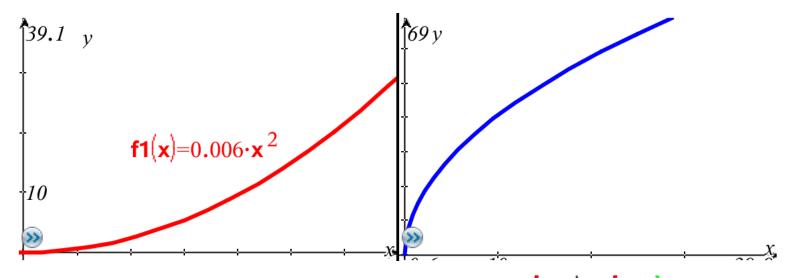
La réciproque d'une fonction

Mise en situation

Deux ingénieurs ont déterminé la relation entre la vitesse d'une voiture et sa distance de freinage. Pour décrire cette relation, on utilise D=0,006v^(2), où D est la distance de freinage, en mètres, et v, la vitesse de la voiture en kilomètres à l'heure. Le graphique de cette fonction (ci-dessous à gauche) montre qu'à mesure que la vitesse augmente, la distance de freinage augmente plus rapidement.

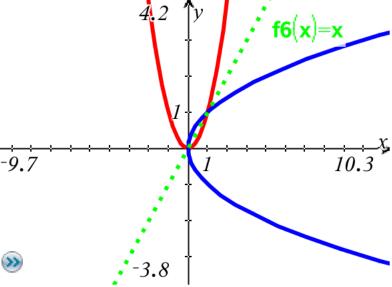
Si on voulait savoir à quelle distance on devrait freiner pour une certaine vitesse, on pourrait regarder au graphique ci-dessous à droite, où la distance est maintenant la variable dépendante.



La réciproque d'une fonction

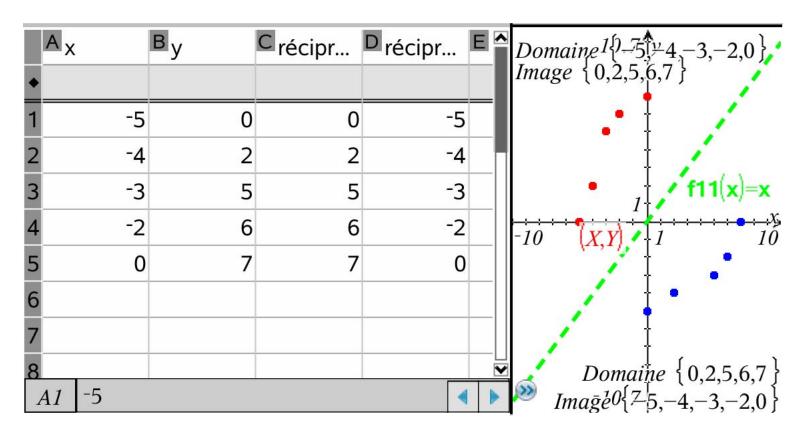
C'est une réflexion diagonale qui a pour effet d'échanger les valeurs indépendantes et dépendantes du graphique. En autres mots, les valeurs de x et les valeurs de y s'inverse.

La réciproque d'une fonction f est notée f^{-1} et on dit qu'une fonction et sa réciproque sont telles que si $f(a)=balors f^{-1}(b)=a$.



Exemple

La table de valeur montre des couples de la fonction $f(\mathbf{x})$. Détermine $f^{-1}(\mathbf{x})$, trace le graphique de $f(\mathbf{x})$ et celui de sa réciproque, puis indique le domaine et l'image de $f(\mathbf{x})$ et ceux de sa réciproque.



Pour déterminer une réciproque algébriquement

La réciproque est "l'inverse" de la fonction initiale, ou le résultat d'opérations inverses. Donc, les étapes à suivre pour déterminer la réciproque sont :

- 1. Écris l'équation sous la forme de "y =", si elle ne l'est pas déjà.
- 2. Permute x et y dans l'équation (échange-les)
- 3. Isole y dans la nouvelle équation (utilise les opérations inverses)
- 4. Remplace y par $f^{(-1)}(x)$.

Exemple

Pour chaque fonction $f(\mathbf{x})$:

- i) détermine $f^{-1}(\mathbf{x})$.
- ii) trace le graphique de $f(\mathbf{x})$ et celui de sa réciproque.
- iii) détermine si la réciproque de $f(\mathbf{x})$ est une fonction.

a)
$$f(x) = 2x - 3$$

Soit y=2x-3

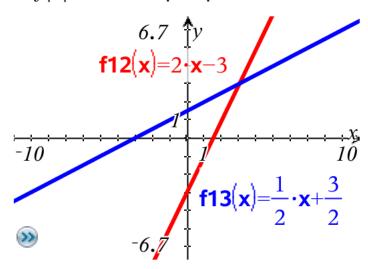
x=2y-3 On permute x et y quant on fait la réciproque.

$$x+3=2y$$

$$\frac{x+3}{2} = y$$

Donc,
$$f^{-1}(\mathbf{x}) = \frac{1}{2}\mathbf{x} + \frac{3}{2}$$
.

Oui, la fonction $f(\mathbf{x})$ et sa réciproque sont des fonctions affines.



b)
$$f(\mathbf{x})=2\mathbf{x}^2+16\mathbf{x}+29$$

Soit $\mathbf{y}=2\mathbf{x}^2+16\mathbf{x}+29$

(puisque la forme générale nous permettra pas de faire la réciproque, il faut changer la fonction à la forme canonique – donc, il faut compléter le carré)

$$\mathbf{y}=2(\mathbf{x}^{2}+8\mathbf{x}+16-16)+29$$

$$=2(\mathbf{x}+4)^{2}-32+29$$

$$=2(\mathbf{x}+4)^{2}-3$$

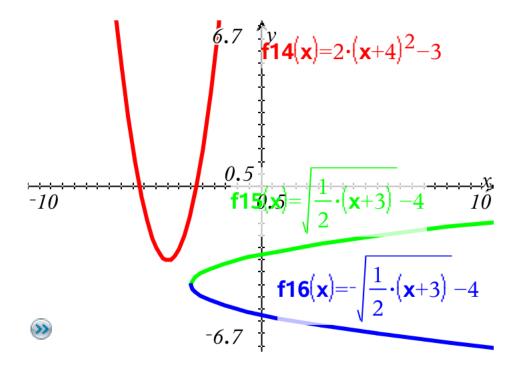
$$\mathbf{x}=2(\mathbf{y}+4)^{2}-3$$
Maintenant, on permute x et y .
$$\mathbf{x}+3=2(\mathbf{y}+4)^{2}$$

$$\frac{\mathbf{x}+3}{2}=(\mathbf{y}+4)^{2}$$

$$\pm\sqrt{\frac{\mathbf{x}+3}{2}}=\mathbf{y}+4$$

$$-4\pm\sqrt{\frac{\mathbf{x}+3}{2}}=\mathbf{y}$$
Donc, $f^{-1}(\mathbf{x})=\sqrt{\frac{1}{2}(\mathbf{x}+3)}-4$ ou $f^{-1}(\mathbf{x})=-\sqrt{\frac{1}{2}(\mathbf{x}+3)}-4$

La réciproque est seulement une fonction si on prend la partie positive ou négative.



Exemple

Reprenons la mise en situation

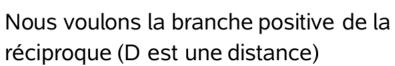
Deux ingénieurs ont déterminé la relation entre la vitesse d'une voiture et sa distance de freinage. Pour décrire cette relation, on utilise $D=0.006v^{(2)}$, où D est la distance de freinage, en mètres, et v, la vitesse de la voiture en kilomètres à l'heure.

- a) Détermine l'équation de la réciproque de cette fonction.
- b) Indique le domaine et l'image de la fonction D et de sa réciproque.

a)
$$v=0.006D^2$$

$$\frac{v}{0,006} = D^2$$

$$\pm \sqrt{\frac{v}{0,006}} = D$$



Donc,
$$D^{-1}(v) = \sqrt{\frac{v}{0,006}}$$
 ou $v(D) = \sqrt{\frac{D}{0,006}}$

b) D(v)
$$\{v \ge 0, v \in \mathbb{R}\} \text{ et } \{D \ge 0, D \in \mathbb{R}\}$$
 v(D)
$$\{D \ge 0, D \in \mathbb{R}\} \text{ et } \{v \ge 0, v \in \mathbb{R}\}$$